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Model-based monitoring systems based on state observer theory often have poor performance 

with respect to accuracy, bandwidth, reliability (false alarms), and robustness. Previous works 

have investigated quantitatively the above limitations from the machine monitoring viewpoint 

and have developed a design methodology for discrete-time well conditioned state observers. In 

this paper, the estimation performance of well-conditioned observers is demonstrated on a DC 

spindle system designed and built for this purpose. "['he results show that the robustness of the 

estimate is similar to that obtained with the well-known Kalman filtering technique. Additional 

simulation-based examples show that the transient as well as steady state error robustness to 

perturbations is better than or equal to Kalman filter performance depending on the nature of 

the modeling error. Because of this robustness, the well-conditioned observer for discrete-time 

systems is an important technique for the development of improved machine monitoring systems. 
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1. I n t r o d u c t i o n  

In many observer-based monitoring systems, 

the application of deterministic state observer 

techniques can be severely restricted because of 

limitations in accuracy, reliability and robustness. 

These observers can produce large transient or 

steady-state errors which can cause frequent false 

alarms. Huh and Stein (1994) identified ill-con- 

ditioning factors as the cause of the above phe- 

nomena and demonstrated that the effects of the 

factors on observer performance are governed by 

a unified main index, xz(P) (condition number 

of the eigensystem p in terms of L2 norm). In a 

subsequent paper (Huh and Stein, 1995), a design 

methodology for well-conditioned state observers 

was developed based on the unified main index. 

The above methodology allows a designer to 

select an observer gain to guarantee well--condi- 

tioned performance from the machine monitoring 
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viewpoint. This is in contrast to classical 

observers (Luenberger, 1966) which can be 

designed based on pole placement techniques. In 

another paper (Huh and Kim, 1995), the above 

methodology has been extended to the discrete- 

time case so that they can be easily implemented 

in real-time monitoring systems. As in the contin- 

uous-time case, a performance index is deter- 

mined tbr discrete-time state observers and is 

shown to be expressed in an Lz norm based 

condition number. Because the determined index 

is similar to the one selected in the continuous- 

time case, the design procedure for well-condi- 

tioned observers is similar to that developed in 

Huh and Stein (1995). 

The performance of well-conditioned observers 

has been investigated in Huh and Stein (1994 and 

1995) using numerical simulation. This paper 

investigates the pertbrmance of the well-condi- 

tioned observer on a laboratory-based DC spin- 

dle drive system designed and built for this pur- 

pose. in particular, the effects of model uncer- 

tainties on observer performance are compared to 

that obtained with a well known Kalman filter- 

ing technique (Kalman, 1960). This is; particular- 
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ly important for state observers used in industrial 

environments, where significant noise and uncer- 

tainty can cause the observer to perform poorly as 

compared to assumptions about those uncer- 

tainties made in computer s imula t ion  experi- 

ments. In addition, another mechanical spindle 

system is represented in a computer simulation in 

order to compare the estimation robustness of the 

proposed observer to a Kalman filter. 

2. Experimental Evaluation 

2.1 DC-spindle drive set-up 
A DC-spindle drive set-up is built to evaluate 

the performance of a well-conditioned observer 

compared with those of conventionally designed 

observers (e. g. Luenberger, 1966; and Kalman, 

1960). The Experimental setup is shown in Fig. I 

The spindle drive consists of a DC motor with a 

tachometer, a compliant shaft, bearings, and cou- 

plings. The motor is excited by the voltage 

produced from the linear amplifier and is con- 

nected to the drive train through the flexible 

coupling. The drive train consists of three bear- 

ings and a shaft with one section enlarged to 

increase its inertia (in order to increase the 

mechanical time constant). The armature voltage, 

motor speed and load speed are measured and 

digitized at 200 Hz. Assuming that the spindle 

drive parameters are time invariant, a 4th order 
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linear state equation for the spindle drive system 

is derived. Based on the measured motor speed 

and the derived model, the load speed is estimated 

and verified by the measured load speed. 

First, a continuous time model for the above 

spindle drive is obtained based on the physical 

law. The parameters of the motor are obtained 

from the manufacturer's data sheet and the inertia 

of the drive train is calculated based on the 

dimensions of the system. Because the bearing 

friction parameter is installation dependent, it is 

obtained by steady-state power consumption 

experiments. The value of the Coulomb friction is 

tuned such that the simulated load speed matches 

the measured load speed. After substituting the 

numerical values on the model, the linear state 

equation is discretized using a zero-order-Hold 

equivalent sampler (0.005 second sampling time). 

Then a discrete plant model for the spindle drive 

is expressed as follows: 

x (K+I )  = q)x(~) + F u  (K) 

y (x) = H x  (K) (1) 

where 

0.7993 0 .0141 0.0022-0.0992q 

~ = / - o . 2 6 2 2  0.2504-0.0123 o.o27o / 
/ 0200a 0.0611 0.9958 0.1033/' 

~ 3.3077 0.0484-0.0374 0.7995 ~ 

Coupler Load inertia 
�9 ~ Bearing ~ Coupler 

DC motor 

Armature voltage ,.~iiiiiiiiiiiiiiiil ii 
7._1  i ii iiii iijiiiiNi i:@i- 

~:;iiiiiii!iii!iiiiiiii ~i~i!ii~ iiiiiii~:i!iiii~ Motor speed 
Load speed 

Fig. 1 Experimental setup 
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[-0.0036 -0.4671] 
• 2 6 4o - 0  0 681 

r:10-  [ 023al - .5115]' H:[1 0 001, 
0.2576 0.8466 

x =: [motor speed; armature current; 

load speed; shaft twist angle~ r 

The objective is to design a discrete-time 

observer capable of estimating the load speed 

based on the measurement of motor voltage and 

speed. In this example three different observer 

techniques (Luenberger-type observer, well-con- 

ditioned observer, and Kalman filter) are applied 

and their performances are compared. The perfor- 

mance of the observers is investigated in terms of 

settling time, transient shape and robustness to 

modeling errors. The observer-based monitoring 

specifications are assumed as follows: settling 

time for the estimation convergence is at most 1 

second; transient error should be small (at most 

100 % in the case of zero initial condition); and 

estimation error should be minimized for a mod- 

eling error (damping coefficient change in this 

example). The experimental protocol is as fol- 

lows. A programmed voltage was applied to the 

motor during the time, 0 sec <_t<~ 16 sec to bring 

the molor from an initial speed of 150 rpm to 

steady-state speed of 450 rpm. The motor voltage, 

speed and load speed were recorded. Then the 

damping coefficients associated with the bearings 

was changed by injecting oil into them and 

another data set was collected. 

2.2 Discrete-time observer design 

0.87] 
Designed observer gain: L = [ - 0 . 8 3 9  

84.888 - 7 . 7 3 8  10.312] r 
Designed observer eigenvalues: 

e i g ( ~ - L H ) = [ 0 . 9 7  0.94 0.9 0.87] 

The main index and the performance indices 

determined in Huh and Kim (1995) have the 

following values: 

Main Index : 

x2(P) =3.1588e  +4  
Other Indices in Table-1 : 

Kz(~-  L H - I )  = 1 . 9 7 0 3 e + 6  

K~ (P) = 2 .  5657e + 4 

1/ [ qlTp~ I = 1 . 9 6 7 8 e + 3  

where &(p)=11 PlldP-ql= is the condition num- 

ber for the eigenvector matrix p of the observer 

matrix (O LH) in terms of an L2 norm. & 

( O - L H - I ) ,  KI(P), and j qrp~[are the condi- 

tion number of the matrix (O-LH- I )  in terms of 

the L 2 norm, the condition number of the eigen- 

vector matrix p in terms of the L~ norm, and the 

inner product of right and left eigenvectors, 

respectively. 

Because the above Luenberger-type observer 

has very large values for performance indices, the 

performance of the designed observer is expected 

to be very ill-conditioned. The results obtained 

Iron] estimating the load speed with a modeling 

error (injecting the lubrication oil in the bear- 

ings) and the initial conditions set to zero is 

illustrated in Fig. 2. This ill-conditioned observer 

gives a huge transient error, large transient-shape 

sensitivity to initial condition selection, and large 

steady-state estimation error due to the modeling 

2.2.1 Luenberger-type observer design 
(Luenberger, 1966) lO~ 

Based on the required settling time of I sec, a 5oo 

full-order discrete Luenberger observer can be ~ 0 

built to estimate the unmeasurable states, ~ ._~oo ~-t0oo 
~ (K+I)  = ~b.~ (/c) + l ' u  (K) +L(y(/c) ~-,5~ 

--/-L~? (/c) ) (2) -2~ 
- 2 5 0 0  

where : ~ R "  is the estimate of the state vari- 
- 3 0 0 0  

ables. The observer is designed by a conventional 

pole-placement technique as follows: Fig. 2 
Desired poles: A=diag[0.97 0.94 0.9 

M e a s u r e d  

i :  

. . . . . . . . . . . . . . . . . . . . . . . . . .  ? . . . . . .  

10  15 2 0  
T i m e ( J e r  

Estimation of load speed from discrete-time 
Luenberger observer 
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e r r o r .  

2.2.2 Well-conditioned observer design 
(proposed in this paper) 

In the discretized plant model of Eq. (1), the 

system matrix ~ can be represented in block 

form. 

[ 0.7993 0.0141 0.0022 - 0 . 0 9 9 2 -  

r 0.2504 - 0 . 0 1 2 3  - 0 . 0 2 7 0  

| 0.2003 0.0611 0.9958 0.1033 

L 3.3077 - 0 . 0 4 8 4  --0.0374 0.7955- 

According to the design procedure developed 

in Huh and Stein(1995), the above system matrix 

can be designed into a well-condit ioned observer 

matrix by utilizing a scaling matrix and selecting 

a proper observer gain. The designed observer 

eigenvalues are separated as widely as possible 

inside the desired convergence region (Huh and 

Stein, 1995). The designed scaling matrix S, the 

observer gain L, and the observer matrix ~ "  are 

S diag[1 1 2.2244 1.33861, 

[ 0. 7634] 

L----[ ll 7__/- -0 .2481[  LL,-q]--] 0.0949/' 
�9 2. 338 ~ 

~0"= O ) ' - L H  
0.0359 0.0141 0 .0048- -0 .1327q  F / 

= ~ - 0 . 0 1 4 1  0.2504 - 0 . 0 2 7 4  - 0 . 0 3 6 2  / 

[ - 0 . 0 0 4 8  0.0274 0.9958 0.0621 / (3) 
�9 0.1327 - 0 . 0 3 6 2  - 0 . 0 6 2 1  0.7955 j 

The above observer matrix has the following 

poles 

eig(flY')=[O.06 0.79 0.98 0.249], 

and the values of the performance indices deter- 

mined in Huh and Kim (1995) are: 

Main Index : 

~c2 (P)  = 2. 0730 
Other Indices in Table-1 : 

~:2 ( dP'-- L H  - I )  = 47.6236 

Kt (P)  = 2 .  5986 

1/ I qrP~ I =1.2106.  

Compared to the Luenberger-type observer, 

much smaller values of the performance indices 

are obtained. The transient and steady-state per- 

formance of the above observer is well-condi-  

6oo 

2oo 

100 

0 

-100 

Fig. 3 

/ Measured 

i l l  . . . . . . . . . . . . . . .  : . . . . . .  

5 10 15 20 Time(see) 

Estimation of load speed from discrete-time, 
well-conditioned observer 

tioned in the sense of eigenvalue sensitivity, tran- 

sient error shape sensitivity, and modeling error 

robustness. The estimation performance result is 

shown in Fig. 3 using the same conditions as with 

the Luenberger-type observer. The estimate con- 

verges within the desired settling time with a 

negligible transient and steady-state error despite 

the presence of  the modeling perturbation. 

2.2.3 Kalman filter design (Kalman, 1960) 
In order to accurately judge the performance of  

the well conditioned observer, the well-known 

and frequently utilized Kalman filter technique 

(Campbell et al, 1983; Broatch and Henley, 1991; 

and Grewal, 1986) is applied to this example 

problem. The development of a Kalman filter for 

this problem assumes a discrete-time system with 

state and measurement equations of the form 

x (~:+ 1) = ~x 0c) +Fu (K) + Gw (/c) 
y (/c) = H x  (/c) + v (/c) (4) 

where process and measurement noise have the 

following respective covariances: 

E { w w r } = Q  E { v v r } = R  E{wvV}=O, 

A predictive form of the stationary Kalman 

filter can be designed to produce an LQG optimal 

estimate of  states. The gain matrix L is deter- 
mined from the algebraic Ricatti equation. 

.~ 0c+ 1) = ( r  - CLH) ,~ (/c) +Fu Or) 
+ O)Ly (K) (5) 

where ~- is expressed as the observation update 
and the state update equations. 

2 (/c) --  ~? (K) + L ( y  0c) - H2- (/c)) 

(/c+ 1) : r (~c) + F u  (K) 
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Fig. 4 

. . . . .  1400 

1000 

8OO 

~r162162162 600 

" ' , , /  400 

200 
i n " - ' - - - r  . . . . . .  r . . . . . .  

0 0 
-3 -2 -1 0 1 2 

log(Qm) 
Performance index values with respect to 
Q / R  

The above Kalman filter algorithm of Eq. (5) 

is applieci to this example with G : E 1  0 1 01 ~ 

This corresponds to the t ime-varying damping 

coefficient parameters located in the first and 

third rows. The covariance matrices Q and /~ 

need to be determined from the stochastic charac- 

terization of the model and measurement. How- 

ever, in o:'der to make a conservative comparison 

to the well-condit ioned observer, 0 and /r are 

tuned until the best estimation performance is 

obtained for the Kalman filter. This tuning proce- 

dure is also confirmed with the performance index 

values as shown in Fig. 4. The selected values for 

the covar ance are Q = 0 . 0 1 1  and R=0 .0011 .  
The de~dgned observer poles are 

e i g ( ~ - ~ L H ) = [ 0 . 1  0.24 0.915 

+0 .041 i ]  

with the performance indices (Huh and Kim, 

1995) of 

Main Index : 

K2 (P)  -- 4. 2298 
Other Indices in Table-1 : 

K2 ( ~0- @LH- I )  : 5 2 .  5712 

K~ (P)  : 5 .  9666 

1/IqfP~ I =2 .0369 

The Kalman filter estimate of the load speed 

compared to the measured speed is illustrated in 

Fig, 5 (The same modeling error as used for the 

Luenberger-type observer is used here). The 

estimation results look quite similar to the well- 

conditioned observer results. It shows that the 

steady-state estimation error (l lx~-~lI~/Hx+* 

6(10 

5 O 0  
m 

3O0 

~o0 

100 

0 

-1(10 

Fig. 5 

10 15 20 Time(sot) 

Estimation of load speed from discrete-time 
Kalman filter 

100%) of the Kalman filter (1.1%) is a little 

smaller than that of the well-condit ioned 

observer (1.7 %), even though the Kahnan filter 

has larger main performance index than the well- 

conditioned observer. This is not a contradiction, 

however, because the index is only related to the 

upper bound of the estimation error. The reader 

should be reminded that the Kalman filter is the 

best filter which was determined from a posteriori 

simulations. Filters with not so finely tuned 

O and R matrices can have larger steady- 

state errors and longer settling times. Therefore, 

the well-condit ioned observer can be regarded as 

the best Kalman filter possible for the given 

estimation problem. This point is further illus- 

trated in the following example. 

3. S i m u l a t i o n  E x a m p l e  

Another  spindle drive example is considered to 

further compare the performance of a well-condi-  

tioned observer with that of Kalman filter. A 

discrete plant model equation for spindle drive 

system is expressed as follows: 

x (K+ 1) = ~x (/c) + F u  (~') 
y (/c) = H x  (K) (6) 

where 

.--0.0015 0.0001 0.0004 0.7366 0.0004.. 

/ -0 .4304-0 .00230.2363419.92120.2520 / 

o ooo o o ooo o o ooo  r 
0 0 0 0.9 0 
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H - - t 1  0 0 0 0] 

In this example, three cases of perturbations are 

considered: in the first case a plant  per turbat ion 

exists in every row of the t ransi t ion matrix ~,  in 

the second case there is a plant  perturbat ion in the 

first, second and third rows of the t ransi t ion 

matrix, and in the third case there is a 5% 

measurement bias in output.  The first two cases of 

plant perturbat ions are expressed as follows (The 

character (x represents the per turbat ions) :  

Case 1: 

O - -  

- 0  0015@2 0 . 0 0 0 1  0.0004 0.7366 0.0004, 1 
-0.4304 -0.0023{x,2 0.2363 419.9212 0.2520 / 

1 
--0.0017 0.0001 0. 0002 X')2 1.3064 0.0008 / 

1 l 0 0 0 -1 .8x0 .9  - 

0 0 0 0.9?0.9 0 

Case 2: 

O =  

-0.0015,k:2 0 . 0 0 0 1  0 .0004  0.7366:x)2 0.0004_ / 
0.4304 -0.0023:X'2 0.2363 419.9212 0.2520 / 

/ 
-0.0017 0.0001@2 0.0002'.~2 1,3064 6.0008 / 

1 1 0 0 0 - i .  8 - 

0 0 0 0.9 0 

3.1 Well-conditioned observer design 
Similar to the experimental set-up, the system 

matrix O in Eq. (6) is represented in block form 

and is designed into a wel l -condi t ioned matrix 

form by scaling and selecting the observer gain. 

3.2 Kalman filter design 
The stationary Kalman filter algorithm of Eq. 

(5) is applied to this example. Plant  perturba- 

tions are assumed to occur in every row of the 

discrete-time transi t ion matrix and the matrix G 

is selected to be G =  [1 1 1 1 1] 7. 

The performance index values as well as the 

steady slate estimation errors of the two observers 

are compared in Table  1 and Table  2 for the two 

cases of plant perturbations.  As shown in Table  I, 

the Kalman filter with Q 1 and ]i' 1000 gives 

the best estimation robustness to the plant pertur- 

bat ion among the possible Ka lman  filters. Even 

though the Kalman filter has a large value for the 

performance index, it demonstrates perturbations 

robustness that is as good as the wel l -condi t ioned 

observer where the performance index value is 

much smaller. However, very different results are 

obtained for case 2. The results for the case 2 

perturbat ion are shown in Table 2. The steady- 

state error perlbrmance between the best Kalman 

filter and the well condi t ioned observer is differ- 

ent by several orders of magnitude. Moreover, 

Table  3 shows the third case where the best 

Kalman tilter demonstrates very sensitive estima- 

tion error when there exists a 5 % output  measure- 

ment bias. In contrast, the wel l -condi t ioned 

observer is much less sensitive to the measurement 

bias. These results indicate that the wel l -condi-  

Table 1 Steady state error (%) of the well-conditioned observer and the Kalman Fitter 
(Case 1 plant perturbation effect) 

O--  1000, R = 1 

Kalman Filter 

Q - l ,  R - - J  Q = I ,  R=1000 

Well-conditioned 

Observer 

/c2((I)-LH I) 8.2176• 5.5631• 7.0764 • 104 3.0357 

/r2 (P) 2.4073• 2.1264• 3.3793• 6.1623 

[x~ 2~ I/x~• 100 0. 5024 % 0.4227 % 0.2127 % 0.1371% 

I x2-,~72]/x2• 53.3324 % 41.2246 % 8.8179 % 7.6758 % 

J x ~ - s  J/x:~x 100 0.3565 % 0.2713 % 0.0456 % 0.0378 % 

] x4 -  aT~ I/,v4 • 100 44.36t9 % 29. 7841% 6.314 t % 7. 2973 % 

ix5 -s215 100 13.5179 % 9.6869 % 0.5603 % 0.9284 % 
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I x, J:~ I/x~ x 100 

I x~-  :5.>2 I /x2X 100 

Kahnan Filter 

~)-7_- 1 T R - - 2 7 7 - - - I - - O - U i T  R Z T [ ~ i }  ..... 

O. 8889 % 

4.9231% 

Well conditioned 

Observer Q =  1000, R = I  
. . . . . . . . . . .  /;: . . . . . . . . . . . . . . . . . . . . . .  -07 .. . . . . . .  2. 0997 % 1.7665 % { 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

205.75 % 151 I2 % I 
J 

. . . . . . . . . . . . . . . . . . . . . . . . .  j 

60.55 % 

O. 5731% 

0.229 % 

I x a -  J~a I / x a x  100 1.324 % 0.9702 % 0.033I % 8.8237• lO -~ % / 

[ x4 - 24 I/x4 • 100 1 27,1.4 % 166.1% 1.2453 • 10 -~ % 

I x~ J~, I /x~ x lOO 

4. 4038 % 

44.5 % i 1.54210 % 4.011 x l 0  -~~ % 

Table 3 Steady state error (%) of the well conditioned observer and the Kalman Filter 

(5 % Output measurement bias effect) 

I x ~ -  2, I /x~ x 100 

Q=1000, R = I  

I X4 ~ 4  [ / X 4  X 1 0 0  

7 .2% 

Kalman Filter 

Q=I ,  R 1 Q-- l ,  R=1000  

5. 291% 0.1783 % 

Well conditioned 

Observer 

1.6615 % 

Ix',_ ? z l / x2X lO0  1207 % 886.9% 3{}.79% 0.6141% 

I xa - 2:~l/xa• 7.8 % 5.7 % 0.1946 % 0.00523 % 

13611% 975.9 % 25.87 % 7. 316 • 10- u % 

9.066 % 261.4 % I x~ ~ys I /xs  x 100 355.7 % 2.356• 9 % 

t ioned observer has superior performance to a 

Kalman filter under the condi t ions  tested and 

from the steady-state error viewpoint .  

The most important  implicat ion thai can be 

deduced :from this s imulat ion example is that 

good performance can be expected from systems 

with small performance index rabies. A filter 

(observer) with a large performance index does 

not necessarily mean large est imation error  due to 

a plant per turbat ion or measurement  bias. How- 

ever, the filter will have large error for some 

perturbat ions and this depends on the orientat ion 

of  the perturbat ion matrix, as investigated by Huh 

and Stein (1994). Thus, a filter can be considered 

as i l l -condi t ioned  in the sense that the est imation 

performance really depends on the envi ronment  

and, therefore, good performance cannot  be guar- 

anteed. However,  the wel l -condi t ioned  observer 

proposed in this paper demonstrates direct ional ly 

insensitiw.' robustness with the l imitat ion that it 

requires the conservat ive design condi t ion  derived 

by Huh and Stein (1995). This  robustness prop- 

erty is very important  to insure accurate, reliable 

moni tor ing  for machine tool diagnostic systems. 

4.  S u m m a r y  a n d  C o n c l u s i o n  

The implementa t ion of  a we l l -cond i t ioned  

observer has been dernonstrated on a hiboratory 

based spindle drive system. With the spindle-  

drive example,  a Luenberger  type observer, Kal-  

man fiher, and a wel l -condi t ioned  observer are 

designed, and their performances compared.  The  

Luenberger  type observer shows severe sensitivity 

to model ing  error. The Kalman filter gives satis- 

factory robustness to this same model ing  error, 

but its performance is sensitive to the selection of  

covar iance  matrix and the or ientat ion of  the plant 

perturbation�9 Also, in selecting the Kahnan filter 

gain, the time constant specification for the esti- 

mat ion convergence cannot  be easily included at 

the design stage. In contrast,  the wel l -condi t ioned  

observer  alh)ws for time constant specification at 

the design stage and demonstrates consistent tran- 

sient shape, smaller est imation error due to mod- 

eling inaccuracy, and insensitivity to output  
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measurement bias. This performance result is 
expected and guaranteed by a small value in the 
performance index. While further experiments are 
needed to consider the effects of noise, well-con- 
ditioned discrete-time state observers provide a 
promising technique for improving the accuracy 
and reliability of machine tool monitoring sys- 
tems. 
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